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The Skorokhod embedding problem

B standard, real-valued Brownian motion

µ a probability measure on (R,B)

Skorokhod embedding problem (SEP) : find stopping time τ such that

Bτ ∼ µ and Bτ = (Bτ∧t) is uniformly integrable

For B0 = 0, there exists a solution as long as µ has a first moment and is
centered. In fact, many different solutions/constructions, e.g.

Skorokhod ’61, Dubins ’68, Root ’68, Rost ’71, Monroe ’72, Azema,
Yor, Bertoin–Le Jan, and many others.
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Root’s solution to the SEP

We call barrier a subset R ⊂ [0,+∞)× R s.t.

(t, x) ∈ R, s > t ⇒ (s, x) ∈ R.

Note that R is a closed barrier iff for some l.s.c. function r : R→ [0,∞]

R = {(t, x) | t > r(x)}

Theorem (Root, 1968)

Let µ be a centered probability measure with first moment. Then there
exists a closed barrier R such that

τ = inf {t > 0 | (t,Bt) ∈ R}

solves the Skorokhod embedding problem for µ.

Theorem (Rost, 1976)

Root’s embedding minimizes E[F (τ)] for all convex increasing F , among
other solutions to the SEP.
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Example 1 : µ = N (0, 1)
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Example 2 : µ = 1
2δ−1 +

1
2δ1
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How to compute the barrier ?

Root & Rost say nothing on how to compute the barrier R.
Recently, regain of interest due to connections with model-free finance,
starting with Dupire (2005).
Solution expressed in terms of potential functions :

Definition

For probability measure µ on (R,B (R)) with finite first moment, let

uµ (x) := −
∫
R
|x − y |µ (dy)

We call uµ the potential function of µ.

uδ0 (x) = − |x | and uδ0 (x) > uµ (x) for any centered probability
measure µ.
More generally, there exists a solution to the SEP(ν, µ)

B0 ∼ ν, Bτ ∼ µ, (Bt∧τ )t > 0 u.i.

if and only if uν > uµ.
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The Root’s barrier as a free boundary

Theorem (Dupire ’05, Cox&Wang ’12)

Let ν, µ be probability measures with uν > uµ. Then the Root’s barrier
R = R(ν, µ) is the free boundary of the solution of the obstacle problem{

min
(
u − uµ, ∂tu − 1

2 ∆u
)

= 0,
u (0, x) = uν (x)

i.e. R = {(t, x) : u (t, x) = uµ (x)}.
In addition, if τ is the Root stopping time corresponding to (ν, µ), then

u(t, x) := −Eν [|x − Bt∧τ |] .
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Example
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Litterature overview

Root (’68) : probabilistic proof of existence.

Röst (’76) : Different approach. First prove existence of an optimal
embedding. Then deduce that it must be necessarily the hitting time
of a barrier.
(Recently generalized by Beiglboeck, Cox, Huesmann).

Cox & Wang (’12) : martingale interpretation of the optimality of
Root’s solution.

G., Oberhauser, dos Reis (’14) : direct proof of existence and
characterization based on maximum principle.

Cox, Obloj, Touzi (’15) : multi-marginal case.

Variants and extensions :

”Reversed” barrier : Röst (’7x), Chacon (’85), McConnell (’91),
Cox-Wang (’15), de Angelis (’16)...

1D diffusions dXt = σ(t,Xt)dBt ,...
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Application : bounded Brownian increments

Standard way to simulate a Brownian path : fix ∆t > 0, and then on the
grid {k∆t, k = 0, 1, . . .}

W(k+1)∆t
= Wt +

√
∆tYk , Yk ∼ N (0, 1),

and then take Ŵ piecewise-linear approximation. Then ‖Ŵ −W ‖ is
small in probability, but no almost sure bounds.
This may be problematic for some applications (e.g. exit distribution
from a space-time domain,...)
−→ replace the deterministic time-increment by exit-times from a chosen
(space-time) set
−→ (Root’s solution to ) Skorokhod embedding : choose target space
distribution (e.g. µ = U [−1, 1]), then compute space-time barrier R such
that

BτR ∼ µ
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The Root’s barrier as solution to an integral equation

Theorem (G&Mijatovic&Oberhauser 13)

Assume that r is the lsc function corresponding to R(δ0, µ), where
µ = U [−1, 1]. Then r is the unique continuous solution on [−1, 1] to

uν (x)− uµ (x) = g(r(x), x)

−
∫ 1

x

(g(r(x)− r(y), x − y) + g(r(x)− r(y), x + y))dy

where g(t, y) =
∫ t

0
ps(y)ds, ps density of Brownian motion at time s.
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Example : Numerical resolution for µ = U([−1, 1])
Discretize [0, 1] with 0 = x0 6 . . . 6 xi = i

n 6 . . . 6 xn = 1. Then take
rn = 0, and inductively

uµ (ih) − uδ (ih) = g (ri , ih) −
n∑

j=i+1

1

2

(
g
(
ri − rj , (i − j) h

)
+ g

(
ri − rj , (i + j) h

))
.
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Application : Random Walk over Root’s barriers

(Müller ’56 : Random walk on spheres for standard multi-dim BM, then
many others...)

D =
⋃

t∈(0,T )

{t} × (at , bt)

where T ∈ (0,∞) is fixed, a, b ∈ C 1 ((0,T ) ,R) and at < bt on (0,T ).
Objective : compute u solution to{

∂tu + 1
2 ∆u = 0 on D

u (t, x) = g (t, x) on PD

Let r = r(δ0,U [−1, 1]) (computed beforehand).
For all (t, x) in D, ρ(t, x) largest ρ s.t. Bρt,x ⊂ D, where

Bρ =
{

(t + ρ2s, x + ρy) s.t. r(y) 6 s
}
.

ρ(t, x) ∼ (parabolic) distance from (t, x) to the boundary.
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Random walk over Root’s barriers

Algorithm :

(T0,X0) = (t, x)

Inductively, let {
Xk+1 = Xk + ρ2(Tk ,Xk)Uk ,

Tk+1 = Tk + ρ(Tk ,Xk)r(Uk),

where Uk sequence of i.i.d. U [−1, 1].

Stop at Kδ = inf{k > 0, ρ(Tk ,Xk) 6 δ}.

Proposition

∃c1,c2 such that for every δ > 0

|Etx [g(TKδ ,XKδ)]− u (t, x)| 6 c1δ.

In addition, the average number of steps satisfies

Et,x [Kδ] 6 c2 (1 + log (1/δ)) ∀ (t, x) ∈ D
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Motivation : stochastic Taylor expansion

Let X be the solution to the Stratonovich SDE

dXt =
d∑

i=1

Vi (Xt) ◦ dB i
t

Then for smooth f , all stopping time τ 6 1,

f (Xt) =f (X0) +
∑
i

(Vi f )(X0)
(
B i
τ − B i

0

)
+
∑
i,j

(ViVj f )(X0)

(∫ τ

0

B i
s ◦ dB j

s

)

+ . . .+
∑

i1,...,ik

(Vi1 . . .Vik f ) (X0)

(∫
0 6 s1 6 ... 6 sk 6 τ

◦dB i1
s1
· · · ◦ dB ik

sk

)
+ R0,τ,k

where R0,τ,k = O(τ
k+1

2 ). −→ higher order discretization schemes
−→ Consider embedding for Enhanced Brownian Motion :

Bt =

(
1,Bt ,

∫ t

0

Bs ⊗ ◦dBs , . . . ,

∫
0 6 t1 6 ... 6 tn 6 t

dBt1 ⊗ · · · ⊗ ◦dBtn

)
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Skorokhod embedding for general Markov processes

Let X be a transient Markov process on (E , E) with semigroup (Pt)t > 0

Skorokhod Embedding : given two probability measures µ, ν on E ,

Find a stopping time τ s.t. Xτ ∼ µ, Pν −a.s. SEP(ν, µ)

Question :

When is there a solution τ to SEP(ν, µ) given by the hitting time of
a barrier τ = inf {t > 0, | (t,Xt) ∈ R} ?

When such a stopping time exists, how do we determine R ?
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(Abstract) classical existence results

Potential kernel U =
∫∞

0
Ptdt, i.e. µU(A) = Eµ

[∫∞
0

1A(Xt)dt
]
.

Theorem (Rost ’71)

There exists a solution to SEP(ν, µ) possibly requiring external
randomization if and only if νU > µU.

We are looking to embed µ as hitting time of a barrier : no additional
randomization allowed ! When is there a solution to SEP(ν, µ) given by a
natural stopping time ?
Counter-examples :

Xt = X0 + t, ν = δ0. Then for any µ supported on R+, there exists
a solution, but not for natural s.t. unless µ = δx .

X multi-dim. BM, ν = δ0, µ = 1
2δ0 + 1

2U(S(1)). Any solution to
(SEP(ν, µ)) requires external randomization, by 0-1 law and the fact
that points are polar for multi-dim BM.

(Existence results for Skorokhod embedding in the class of natural
stopping times due to Falkner (’82, ’83) Falkner & Fitzsimmons (’91).)
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Root’s barrier for Markov processes

Assumptions :

1 X is a standard process (in the sense of Blumenthal Getoor) in
duality with a standard process X̂ with respect to a measure ξ.
In particular, this implies that νU

dξ =: νÛ exists.

In addition, assume that that

Pt(x , dy) = pt(x , y)ξ(dy), P̂t(dx , y) = pt(x , y)ξ(dx),

and t 7→ pt(x , y) is continuous in t (with some uniformity condition).

2 Any semipolar set is polar.
(Let JA : {t > 0,Xt ∈ A}, then A is polar if JA = ∅ a.s., and
semipolar if JA is countable a.s.)
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Root’s barrier for Markov processes

Theorem (Bayer,G.,Oberhauser (in progress))

Let ν, µ be probability measures with νU > µU, and such that µ charges
no semipolar set. Then :

Under Assumption (1), there exists a barrier R such that

TR := inf{t > 0, (t,Xt) ∈ R}

embeds µ into ν.

Under Assumptions (1) and (2), one can take R given as the free
boundary to the obstacle problem with obstacle
νÛ1{t 6 0} + µÛ1{t>0}.

Proof of existence : strongly relies on results of Rost and R.M.
Chacon.

One can write a more general condition on µ such that there exists a
barrier embedding.
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Enhanced brownian motion

Let B be standard BM on Rd . We consider the Markov process

Bt =

(
1,Bt ,

∫ t

0

Bs ⊗ ◦dBs , . . . ,

∫
0 6 t1 6 ... 6 tn 6 t

dBt1 ⊗ · · · ⊗ ◦dBtn

)
Brownian motion on nilpotent Lie group Gn,d = exp gn,d (definition of
elements of Gn,d reflect chain rule, e.g.

∫
B1 ◦ dB1 = 1

2 (B1)2)
To simplify, fix now n = d = 2.
Log-coordinates

(Xt ,Yt ,At) =

(
B1
t ,B

2
t ,

1

2

∫ t

0

B1
s dB

2
s − B2

s dB
1
s

)
.

Group law

(x , y , a) ∗ (x ′, y ′, a′) =

(
x + x ′, y + y ′, a + a′ +

1

2
(xy ′ − x ′y)

)
.

B has generator 1
2 ∆G = 1

2

(
X 2

1 + X 2
2

)
where in coordinates

X1 = ∂x −
y

2
∂a, X2 = ∂y +

x

2
∂a.

The sub-laplacian ∆G is hypoelliptic on Gn,d .
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Potential kernel :

µÛ(h) :=

∫
Gd,n

µ(dg)u(g , h),

where u is the fundamental solution ∆Gu(·, h) = −δh, and is given
by

u(g , h) = N(g ∗ h−1)−Q+2,

where Q = Q(d , n) and N is an “homogeneous norm” on Gd,n.
Special cases :

n = 1, d > 3: Q = d , N Euclidean norm on Rd .
n = d = 2 :

Q = 4, N(x , y , a) = cN

((
x2 + y 2

)2

+ 16a2

) 1
4

.

Enhanced Brownian motion B satisfies the assumptions needed for
existence and characterization of the Root barrier.
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We need to find measures µ such that µÛ 6 δ0Û (if possible with a
density which is easy to sample from) :

Very explicit formulae (Gaveau ’77, Bonfiglioli-Lanconelli ’03) for
exit measures for B from “sphere” SN(r) = {g ∈ Gd,n, N(g) = r}
→ one can then take linear combinations of those measures
(∼ radial measures).

Proposition

Let µ̃ be any probability measure on (0,∞). Let

µ =

∫ ∞
0

µ̃(dr)
c

rQ−1

∫
SN (r)

|∇HN|2 (g)

|∇N| (g)
dσ(g),

where σ is the surface measure,and |∇HN|2 :=
∑n

i=1 |Xi (N)|2.
Then one has

µÛ 6 δÛ.
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For instance, for n = d = 2, one can take

dµ (x , y , a) =
4

π
1(x2+y2)2+16a2<1

x2 + y2(
(x2 + y2)2 + 16a2

)1/2
dxdyda.

Then µÛ 6 δ0Û, and µÛ is bounded and continuous.

→ one can then numerically compute µÛ, and solve the obstacle problem{
min[(∂t − 1

2 ∆G )f , f − µÛ] = 0 on (0,∞)× G ,

f (0, ·) = δ0Û

to obtain the Root’s barrier.

Note that due to symmetry, x , y will only appear through x2 + y2. So we
only need to solve a PDE in 2 space dimensions (and then store a 2-dim
array for barrier function r).

Work in progress : numerical implementation, application to simulation
of SDEs with bounded increments (in time,space,area),...
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Conclusion

Root’s solution to the Skorokhod embedding :

conceptually simple (just a hitting time)

can be computed efficiently (obstacle problem, integral equation)

many applications (model-free finance, numerics,...)
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